A Comparison of Nickel-Perfluorophenyl and Nickel-Perchlorophenyl Linkages, from an X-Ray Crystallographic Study of trans- $\left(\mathbf{P P h}_{2} \mathbf{M e}\right)_{2} \mathbf{N i}\left(\sigma-\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\sigma-\mathrm{C}_{6} \mathrm{Cl}_{5}\right)$

By Melvyn R. Churchill* \dagger and Mikelis V. Veidis
(Department of Chemistry, Harvard University, Cambridge, Massachusetts 02138)

Summary A single-crystal X-ray diffraction study of trans- $\left(\mathrm{PPh}_{2} \mathrm{Me}\right)_{2} \mathrm{Ni}\left(\sigma-\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\sigma-\mathrm{C}_{6} \mathrm{Cl}_{5}\right) \quad(R=4.91 \%)$ shows the nickel-pentachlorophenyl distance of $1.905 \pm 0.010 \AA$ to be significantly $(5 \cdot 4 \sigma)$ shorter than the nickel-pentafluorophenyl distance of $1.978 \pm 0.009 \AA$.

As with perfluoroalkyls, ${ }^{1,2,3 a}$ the greater stability ${ }_{+}^{+}$of transition-metal σ-aryls (relative to σ-alkyls) appears to be associated with a shorter metal-carbon bond distance. ${ }^{3 \mathrm{~b}, 4}$ However, while σ-perfluoroaryls are demonstrably more stable than non-fluorinated σ-aryls, no significant difference was found between nickel-carbon distances in $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Ni}-$ $\left(\mathrm{PPh}_{3}\right)\left(\sigma-\mathrm{C}_{6} \mathrm{~F}_{5}\right) \quad\left[\mathrm{Ni}-\left(\sigma-\mathrm{C}_{6} \mathrm{~F}_{5}\right)=1.914 \pm 0.014 \AA^{5,6}\right.$ and $(\pi-$ $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Ni}\left(\mathrm{PPh}_{3}\right)\left(\sigma-\mathrm{C}_{6} \mathrm{H}_{5}\right)\left[\mathrm{Ni}-\left(\sigma-\mathrm{C}_{6} \mathrm{H}_{5}\right)=1.904 \pm 0.007 \AA\right]^{5,7}$

We now report the results of a single-crystal X-ray diffraction study of trans- $\left(\mathrm{PPh}_{2} \mathrm{Me}\right)_{2} \mathrm{Ni}\left(\sigma-\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\sigma-\mathrm{C}_{6} \mathrm{Cl}_{5}\right) .{ }^{8}$ The present structural study is the first on a σ-perchlorophenyl complex and the first on a molecule containing more than one type of simple metal-carbon σ-bond.§

Crystal data: $\mathrm{C}_{38} \mathrm{H}_{26} \mathrm{P}_{2} \mathrm{~F}_{5} \mathrm{Cl}_{5} \mathrm{Ni}, M=875 \cdot 56$, monoclinic, $a=15 \cdot 822(13), b=16 \cdot 888(12), c=15 \cdot 375(19), \beta=114 \cdot 16$ $\pm 0.03^{\circ}, U=3748.4 \AA^{3}, \quad D_{\mathrm{m}}=1.48 \pm 0.05, D_{\mathrm{c}}=1.551$ $\mathrm{g} \mathrm{cm}^{-3}, Z=4$, space group $C 2 / c\left(C_{2 h}^{6} ;\right.$ No. 15$)$.

Diffraction data to $\sin \theta=0.38$ (Mo- K_{α} radiation, $\bar{\lambda}=$ $0.7107 \AA$) were collected on a Supper-Pace "Buerger Automated Diffractometer' using a 'stationary-background, ω-scan, stationary-background' counting sequence and equi-inclination Weissenberg geometry. Data for the
levels $h k 0-16$ and $0-16 k l$ were corrected for absorption ($\mu=9.78 \mathrm{~cm}^{-1}$) and merged to a common scale. Solution of the structure was accomplished via a combination of a Patterson map, Fourier syntheses, and full-matrix leastsquares refinement of positional and anisotropic thermal parameters for all non-hydrogen atoms. All atoms other than methyl hydrogens have been located, the final discrepancy index R being 4.91% for the 1604 independent non-zero reflections.

The nickel atom lies at $0,0 \cdot 0362,1 / 4$ [i.e., special position 4(e) of space group $\left.C 2 / c^{9}\right]$; the molecule thus has crystal-lographically-required C_{2} symmetry (see Figure). While the $\mathrm{NiP}_{2} \mathrm{C}_{2}$ core of the molecule is required to be strictly planar, bond angles around the nickel atom centre are not perfectly regular, viz.,

The nickel-phosphorus bond lengths are each $2 \cdot 230$ $\pm 0.003 \AA$, mean distances within the diphenylmethylphosphine ligands being $\mathrm{P}-\mathrm{C}_{6} \mathrm{H}_{5}=1.823(6), \quad \mathrm{P}-\mathrm{CH}_{3}=$ $1.853(7)$, and $\mathrm{C}-\mathrm{C}=1.385(12) \AA$.
The nickel-pentafluorophenyl bond length is $1.978 \pm$ $0.009 \dot{A}$. The six carbon atoms of the $\sigma-\mathrm{C}_{6} \mathrm{~F}_{5}$ ligand form a plane (root-mean-square deviation $0.005 \AA$) from which the fluorine atoms deviate by a maximum of only $0.029 \AA$. Mean distances within this ligand are $\mathrm{C}-\mathrm{C}=1 \cdot 374(10)$ and $\mathrm{C}-\mathrm{F}=1 \cdot 347(10) \AA$.

[^0]The nickel-pentachlorophenyl distance is $1.905 \pm$ $0.010 \AA$. While the six carbon atoms of this ligand are approximately coplanar (root-mean-square deviation $0.017 \AA$) the individual chlorine atoms lie $+0.064,-0.108$, $0.000,+0.108,-0.064 \AA$ from this plane (distances given cyclically, starting with an ortho-chlorine). Presumably these deviations are a result of repulsions between adjacent

Figure. The molecular geometry of trans- $\left(\mathrm{PPh}_{2} \mathrm{Me}_{2}\right)_{2} \mathrm{Ni}\left(\sigma-\mathrm{C}_{8} \mathrm{~F}_{5}\right)$ -$\left(\sigma-\mathrm{C}_{6} \mathrm{Cl}_{5}\right)$, showing the crystallographic C_{2} axis.
chlorine atoms. Average bond lengths within this ligand are $\mathrm{C}-\mathrm{C}=1.395(10)$ and $\mathrm{C}-\mathrm{Cl}=1.722(10) \AA$.

The $\sigma-\mathrm{C}_{6} \mathrm{~F}_{5}$ ligand makes a dihedral angle of $79^{\circ} 25^{\prime}$ with the $\mathrm{NiP}_{2} \mathrm{C}_{2}$ co-ordination plane; other dihedral angles are $\angle\left[\mathrm{C}_{6} \mathrm{Cl}_{5}-\mathrm{NiP}_{2} \mathrm{C}_{2}\right]=85^{\circ} 01^{\prime}$ and $\angle\left[\mathrm{C}_{6} \mathrm{Cl}_{3}-\mathrm{C}_{6} \mathrm{~F}_{5}\right]=5^{\circ} 37^{\prime}$.

The difference of $0.073 \AA$ between $\mathrm{Ni}-\left(\sigma-\mathrm{C}_{6} \mathrm{~F}_{5}\right)$ and $\mathrm{Ni}-\left(\sigma-\mathrm{C}_{6} \mathrm{Cl}_{5}\right)$ bond lengths is meaningful at the $5 \cdot 4 \sigma$ level. The $\mathrm{Ni}-\left(\sigma-\mathrm{C}_{6} \mathrm{Cl}_{5}\right)$ bond is thus significantly shorter (and, therefore, stronger) than the $\mathrm{Ni}-\left(\sigma-\mathrm{C}_{6} \mathrm{~F}_{5}\right)$ linkage. Possible reasons for this include the following:
(i) the $\mathrm{Ni}-\left(\sigma-\mathrm{C}_{6} \mathrm{Cl}_{5}\right)$ bond is shortened relative to the $\mathrm{Ni}-\left(\sigma-\mathrm{C}_{6} \mathrm{~F}_{5}\right)$ bond due either to increased $d_{\pi}-p_{\pi}$ metal \rightarrow ligand back-donation or to the $\mathrm{Ni} \leftarrow \mathrm{C}_{8} \mathrm{Cl}_{5} \sigma$-bond being stronger than the $\mathrm{Ni} \leftarrow \mathrm{C}_{6} \mathrm{~F}_{5} \sigma$-bond.
(ii) the $\mathrm{Ni}-\left(\sigma-\mathrm{C}_{6} \mathrm{~F}_{5}\right)$ bond is lengthened relative to the $\mathrm{Ni}-\left(\sigma-\mathrm{C}_{6} \mathrm{Cl}_{5}\right)$ bond due to the trans-effect of a $\mathrm{C}_{6} \mathrm{Cl}_{5}$ ligand being greater than that of a $\mathrm{C}_{6} \mathrm{~F}_{5}$ ligand.

It is unlikely that the difference in nickel-carbon bond lengths is steric in origin since angular distortions of $c a .1 \cdot 6^{\circ}$ in the nickel co-ordination sphere involve far less energy than bond expansion by $0.073 \AA$.

It is hoped that the above picture will be clarified by accurate crystallographic studies on such species as trans$\left(\mathrm{PPh}_{2} \mathrm{Me}\right)_{2} \mathrm{Ni}\left(\sigma-\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}$ and trans- $\left(\mathrm{PPh}_{2} \mathrm{Me}\right)_{2} \mathrm{Ni}\left(\sigma-\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{X}$ (X $=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})$.

We thank Professor M. D. Rausch for providing the sample; this work was generously supported by the National Science Foundation and the Advanced Research Projects Agency.
(Received, July 13th, 1970; Com. 1115.)
${ }^{1}$ M. R. Churchill and J. P. Fennessey, Chem. Comm., 1966, 695; M. R. Churchill and J. P. Fennessey, Inorg. Chem., 1967, 6, 1213.
${ }^{2}$ M. R. Churchill and R. Mason, Adv. Organometallic Chem., 1967, 5, 93, esp. pp. 125-128.
${ }^{3}$ M. R. Churchill, Perspectives in Structural Chemistry, 1970, 3, 91, (a) Table 8, p. 153 (b) Table 11, p. 155.
${ }^{4}$ M. D. Rausch, A. K. Ignatowicz, M. R. Churchill, and T. A. O'Brien, J. Amer. Chem. Soc., 1968, 90, 3242; M. R. Churchill and T. A. O'Brien, J. Chem. Soc. (A), 1969, 1110.
${ }^{5}$ M. R. Churchill, T. A. O'Brien, M. D. Rausch, and Y. F. Chang, Chem. Comm., 1967, 992.
${ }^{6}$ M. R. Churchill and T. A. O'Brien, J. Chem. Soc. (A), 1968, 2970.
${ }^{7}$ M. R. Churchill and T. A. O'Brien, J. Chem. Soc. (A), 1969, 266.
${ }^{8}$ M. D. Rausch and F. E. Tibbetts, Inorg. Chem., 1970, 9, 512.

- "International Tables for X-Ray Crystallography," Volume 1, The Kynoch Press, Birmingham, England, 1965, p. 101.

[^0]: \dagger Fellow of the Alfred P. Sloan Foundation, 1968-1970.
 \ddagger Throughout this text, the term "stability"' should be taken to mean stability with respect to thermal decomposition and aerobic (or other chemical) oxidation.
 § Such ligands as CO, CN, RNC are not included by this statement since they are bonded to a transition metal both by a metalcarbon σ-bond and by a strong $d_{\pi} \rightarrow p_{\pi}$ (metal \rightarrow ligand) π-bond.

